Open Access
Numéro |
SHS Web Conf.
Volume 78, 2020
7e Congrès Mondial de Linguistique Française
|
|
---|---|---|
Numéro d'article | 11006 | |
Nombre de pages | 15 | |
Section | Ressources et outils pour l'analyse linguistique | |
DOI | https://doi.org/10.1051/shsconf/20207811006 | |
Publié en ligne | 4 septembre 2020 |
- Arya, D. J., Hiebert, E. H., and Pearson, P. D. (2011). The effects of syntactic and lexical complexity on the comprehension of elementary science texts. Int Electronic Journal of Elementary Education, 4(1):107–125. [Google Scholar]
- Bautista, S., Gerva s, P., and Madrid, R. I. (2009). Feasibility analysis for semi-automatic conversion of text to improve readability. In Int Conf on Inform and Comm Technology and Accessibility (ICTA), pages 33–40. [Google Scholar]
- Beigman Klebanov, B., Knight, K., and Marcu, D. (2004). Text simplification for informationseeking applications. In Meersman, R. and Tari, Z., editors, On the Move to Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE. Springer, LNCS vol 3290, Berlin, Heidelberg. [Google Scholar]
- Blake, C., Kampov, J., Orphanides, A., West, D., and Lown, C. (2007). Query expansion, lexical simplification, and sentence selection strategies for multi-document summarization. In DUC. [Google Scholar]
- Brouwers, L., Bernhard, D., Ligozat, A.-L., and Franc pis, T. (2014). Syntactic sentence simplification for French. In PITR workshop, pages 47–56. [Google Scholar]
- Brunato, D., Dell’Orletta, F., Venturi, G., and Montemagni, S. (2014). Defining an annotation scheme with a view to automatic text simplification. In CLICIT, pages 87–92. [Google Scholar]
- Carroll, J., Minnen, G., Canning, Y., Devlin, S., and Tait, J. (1998). Practical simplification of English newspaper text to assist aphasic readers. In AAAI98 Workshop on Integrating Artificial Intelligence and Assistive Technology, pages 7–10. [Google Scholar]
- Chandrasekar, R. and Srinivas, B. (1997). Automatic induction of rules for text simplification. Knowledge Based Systems, 10(3):183–190. [CrossRef] [Google Scholar]
- Chen, P., Rochford, J., Kennedy, D. N., Djamasbi, S., Fay, P., and Scott, W. (2016). Automatic text simplification for people with intellectual disabilities. In AIST, pages 1–9. [Google Scholar]
- De Belder, J. and Moens, M.-F. (2010). Text simplification for children. In Workshop on Accessible Search Systems of SIGIR, pages 1–8. [Google Scholar]
- Devlin, S. and Tait, J. (1998). The use of psycholinguistic database in the simplification of text for aphasic readers. In Linguistic Database, pages 161–173. [Google Scholar]
- Drndarevic, B., Stajner, S., and Saggion, H. (2012). Reporting simply: A lexical simplification strategy for enhancing text accessibility. In Easy to read on the web, pages 1–6. [Google Scholar]
- Germann, U. (2008). Yawat: Yet another word alignment tool. In ACL, editor, ACL-08: HLT Demo Session, pages 20–23, Columbus, USA. [CrossRef] [Google Scholar]
- Glavas, G. and Stajner, S. (2015). Simplifying lexical simplification: Do we need simplified corpora? In ACL-COLING, pages 63–68. [Google Scholar]
- Kim, Y.-S., Hullman, J., Burgess, M., and Adar, E. (2016). SimpleScience: Lexical simplification of scientific terminology. In EMNLP, pages 1–6. [Google Scholar]
- Laurent, D., Negre, S., and Ségue la, P. (2009). L’analyseur syntaxique Cordial dans Passage. In Traitement Automatique des Langues Naturelles (TALN). [Google Scholar]
- Leroy, G., Kauchak, D., and Mouradi, O. (2013). A user-study measuring the effects of lexical simplification and coherence enhancement on perceived and actual text difficulty. Int J Med Inform, 82(8):717–730. [CrossRef] [Google Scholar]
- Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word representations in vector space. In Workshop at ICLR. [Google Scholar]
- Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D., and Miller, K. (1993). Introduction to wordnet: An on-line lexical database. Technical report, WordNet. [Google Scholar]
- Nisioi, S., Stajner, S., Ponzetto, S. P., and Dinu, L. P. (2017). Exploring neural text simplification models. In Ann Meeting of the Assoc for Comp Linguistics, pages 85–91. [Google Scholar]
- Paetzold, G. H. and Specia, L. (2016). Benchmarking lexical simplification systems. In LREC, pages 3074–3080. [Google Scholar]
- Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word representation. In EMNLP 2014, pages 1532–1543. [Google Scholar]
- Sennrich, R., Haddow, B., and Birch, A. (2016 ). Improving neural machine translation models with monolingual data. In Proc of the Ann Meeting of the Assoc for Comp Linguistics, pages 8696, Berlin, Germany. [Google Scholar]
- Shardlow, M. (2014). A survey of automated text simplification. Int J Advanced Computer Science and Applications, 1:1–13. [Google Scholar]
- Son, J. Y., Smith, L. B., and Goldstone, R. L. (2008). Simplicity and generalization: Short- cutting abstraction in children’s object categorizations. Cognition, 108:626–638. [CrossRef] [Google Scholar]
- Stymne, S., Tiedemann, J., Hardmeier, C., and Nivre, J. (2013). Statistical machine translation with readability constraints. In NODALIDA, pages 1–12. [Google Scholar]
- Vickrey, D. and Koller, D. (2008). Sentence simplification for semantic role labeling. In Annual Meeting of the Association for Computational Linguistics-HLT, pages 344–352. [Google Scholar]
- Vila, M., Anto’nia Mart, M., and Rodr iguez, H. (2011). Paraphrase concept and typology. A linguistically based and computationally oriented approach. Procesamiento del Lenguaje Natural, 46: 83–90. [Google Scholar]
- Wang, T., Chen, P., Amaral, K., and Qiang, J. (2016a). An experimental study of LSTM encoder-decoder model for text simplification. In IJCAI, pages 1–7. [Google Scholar]
- Wang, T., Chen, P., Rochford, J., and Qiang, J. (2016b). Text simplification using neural machine translation. In Proc of the AAA! Conference on Artificial Intelligence (AAAI- 16), pages 4270–4271. [Google Scholar]
- Wei, C.-H., Leaman, R., and Lu, Z. (2014). SimConcept: A hybrid approach for simplifying composite named entities in biomedicine. In BCB ’ 14, pages 138–146. [CrossRef] [Google Scholar]
- Wubben, S., van den Bosch, A., and Krahmer, E. (2012). Sentence simplification by monolingual machine translation. In Annual Meeting of the Association for Computational Linguistics, pages 1015–1024. [Google Scholar]
- Xu, W., Napoles, C., Pavlick, E., Chen, Q., and Callison-Burch, C. (2016). Optimizing statistical machine translation for text simplification. Transactions of the Association for Computational Linguistics, 4:401–415. [CrossRef] [Google Scholar]
- Yu, Q., Max, A., and Yvon, F. (2012). Revisiting sentence alignment algorithms for alignment visualization and evaluation. In BUCC workshop, pages 1–7. [Google Scholar]
- Zhang, X. and Lapata, M. (2017). Sentence simplification with deep reinforcement learning. In ACL, editor, Proc of the Conf on Empirical Methods in Natural Language Processing, pages 584–594, Copenhagen, Denmark. [Google Scholar]
- Zhao, S., Wang, H., and Liu, T. (2010). Leveraging multiple MT engines for paraphrase generation. In COLING, pages 1326–1334. [Google Scholar]
- Zhu, Z., Bernhard, D., and Gurevych, I. (2010). A monolingual tree-based translation model for sentence simplification. In COLING 2010, pages 1353–1361. [Google Scholar]