Open Access
Numéro |
SHS Web of Conferences
Volume 27, 2016
5e Congrès Mondial de Linguistique Française
|
|
---|---|---|
Numéro d'article | 11008 | |
Nombre de pages | 12 | |
Section | Ressources et Outils pour l’analyse linguistique | |
DOI | https://doi.org/10.1051/shsconf/20162711008 | |
Publié en ligne | 4 juillet 2016 |
- Bagheri, A., Saraee, M., and De Jong, F. ADM-LDA : An aspect detection model based on topic modelling using the structure of review sentences. Journal of Information Science 40, 5 (2014), 621–636. [CrossRef] [Google Scholar]
- Buitelaar, P., Olejnik, D., and Sintek, M. A protégé plug-in for ontology extraction from text based on linguistic analysis. In The Semantic Web : Research and Applications (2004), vol. 3053, pp. 31–44. [CrossRef] [Google Scholar]
- Candito, M., Crabbé, B., and Denis, P. Statistical French Dependency Parsing : Treebank Conversion and First Results. In Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10) (2010). [Google Scholar]
- Cimiano, P., Mädche, A., Staab, S., and Völker, J. Ontology learning. In Handbook on Ontologies. 2009, pp. 245–267. [CrossRef] [Google Scholar]
- Cimiano, P., and Völker, J. Text2onto - a framework for ontology learning and data-driven change discovery. In Proceedings of the 10th International Conference on Applications of Natural Language to Information Systems (NLDB) (2005), vol. 3513, pp. 227–238. [Google Scholar]
- Croce, D., Garzoli, F., Montesi, M., Cao, D. D., and Basili, R. Enabling Advanced Business Intelligence in Divino. In Proceedings of the 7th International Workshop on Information Filtering and Retrieval co-located with the 13th Conference of the Italian Association for Artificial Intelligence (2013), pp. 61–72. [Google Scholar]
- Daille, B., Dubreil, E., Monceaux, L., and Vernier, M. Annotating opinion-evaluation of blogs : the Blogo-scopy corpus. Language Resources and Evaluation 45, 4 (2011), 409–437. [CrossRef] [Google Scholar]
- Dalal, M. K., and Zaveri, M. A. Semisupervised Learning Based Opinion Summarization and Classification for Online Product Reviews. Appl. Comp. Intell. Soft Comput. (2013). [Google Scholar]
- Dufour-Lussier, V., Ber, F. L., Lieber, J., Meilender, T., and Nauer, E. Semi-automatic annotation process for procedural texts : An application on cooking recipes. CoRR (2012). [Google Scholar]
- Erdmann, M., Maedche, A., Schnurr, H.-P., and Staab, S. From manual to semi-automatic semantic annotation : About ontology-based text annotation tools. In Proceedings of the COLING - Workshop on Semantic Annotation and Intelligent Content (2000). [Google Scholar]
- Fortuna, B., Grobelnik, M., and Mladenic, D. Ontogen : semi-automatic ontology editor. In Proceedings of the 2007 conference on Human interface : Part II (2007), pp. 309–318. [Google Scholar]
- Gruber, T. R. Toward principles for the design of ontologies used for knowledge sharing ? International Journal of Human-Computer Studies 43, 5–6 (1995), 907 – 928. [CrossRef] [Google Scholar]
- Guarino, N. Some ontological principles for designing upper level lexical resources. In Proceedings of the First International Conference on Language Resources and Evaluation (1998). [Google Scholar]
- Hammer, H. L., Solberg, P. E., and Øvrelid, L. Sentiment classification of online political discussions : a comparison of a word-based and dependency-based method. In Proceedings of the 5th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis (2014), pp. 90–96. [Google Scholar]
- Hu, M., and Liu, B. Mining and Summarizing Customer Reviews. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2004), pp. 168–177. [Google Scholar]
- Jiang, L., Yu, M., Zhou, M., Liu, X., and Zhao, T. Target-dependent twitter sentiment classification. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics : Human Language Technologies - Volume 1 (2011), pp. 151–160. [Google Scholar]
- Khan, F. H., Bashir, S., and Qamar, U. TOM : Twitter Opinion Mining Framework Using Hybrid Classification Scheme. Decis. Support Syst. 57 (2014), 245–257. [CrossRef] [Google Scholar]
- Lapponi, E., Read, J., and Ovrelid, L. Representing and Resolving Negation for Sentiment Analysis. In Data Mining Workshops (ICDMW) (2012). [Google Scholar]
- Lark, J., Morin, E., and Peña Saldarriaga, S. CANÉPHORE : a French corpus for aspect-based sentiment analysis evaluation. TALN, 2015. [Google Scholar]
- Mele, F., Sorgente, A., and Vettigli, G. An Italian Corpus for Aspect Based Sentiment Analysis of Movie Reviews. In First Italian Conference on Computational Linguistics CLiC-it (2014). [Google Scholar]
- Mondary, T., Després, S., Nazarenko, A., and Szulman, S. Construction d’ontologies à partir de textes : la phase de conceptualisation. In Actes des 19èmes Journées Francophones d’Ingénierie des Connaissances (IC’08) (2008), pp. 87–98. [Google Scholar]
- Russell, S. J., Norvig, P., Candy, J. F., Malik, J. M., and Edwards, D. D. Artificial intelligence : a modern approach. Prentice-Hall, Inc., 1996. [Google Scholar]
- Steinberger, J., Brychcín, T., and Konkol, M. Aspect-Level Sentiment Analysis in Czech. In Proceedings of the 5th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis (2014). [Google Scholar]
- Szulman, S. Une nouvelle version de l’outil terminae de construction de ressources termino-ontologiques. In 22èmes journées francophones d’Ingénierie des Connaissances (poster) (2011), p. 3. [Google Scholar]
- Uschold, M., and King, M. Towards a methodology for building ontologies. In Workshop on Basic Ontological Issues in Knowledge Sharing, held in conjunction with IJCAI-95 (1995). [Google Scholar]
- Vilares, D., Alonso, M. A., and Gómez-Rodríguez, C. On the usefulness of lexical and syntactic processing in polarity classification of Twitter messages. Journal of the Association for Information Science and Technology (2015). [Google Scholar]
- Wachsmuth, H., Trenkmann, M., Stein, B., Engels, G., and Palakarska, T. A Review Corpus for Argumentation Analysis. In Computational Linguistics and Intelligent Text Processing, vol. 8404. 2014, pp. 115–127. [Google Scholar]
- Wiebe, J., Wilson, T., and Cardie, C. Annotating Expressions of Opinions and Emotions in Language. Language Resources and Evaluation 39, 2-3 (2005), 165–210. [CrossRef] [Google Scholar]
- Wu, Y., Zhang, Q., Huang, X., and Wu, L. Phrase Dependency Parsing for Opinion Mining. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing : Volume 3 (2009), pp. 1533–1541. [Google Scholar]
- Yimam, S. M., de Castilho, R. E., Gurevych, I., and Biemann, C. Automatic Annotation Suggestions and Custom Annotation Layers in WebAnno. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. System Demonstrations (2014), pp. 91–96. [Google Scholar]